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Introduction 
 
 
Chromatographic analytical method development is currently a time consuming process usually 

done by trial and error. The method development workflow typically involves three major 

activities done sequentially: column screening, formal method development, and robustness 

verification. Column screening, or scouting, is the activity of selecting the correct analytical 

column. Evaluating organic solvent type and pH is sometimes included in this phase. Formal 

method development identifies the settings of the remaining important instrument parameters 

that best separate all compounds of interest. Robustness verification, normally done as part of 

method validation, demonstrates the insensitivity of method performance to the cumulative small 

deviations of critical instrument parameter settings around their setpoints expected during normal 

use over time. 

 
In a previous white paper the authors described the problems and information limitations 

inherent in both traditional sequential and classical Design of Experiments (DOE) approaches to 

column screening. The white paper described a new methodology for automated HPLC column 

and solvent system selection using Quality-by-Design (QbD) principles. The new methodology, 

adapted to multiple instruments and instrument data systems, overcomes the problems and 

limitations inherent in current screening approaches. 

 
This white paper describes the extension of the new QbD-based methodology to the formal 

method development work phase. Regulatory guidances state that a best-practices approach 

should addresses robustness during formal method development. Therefore, a critical element of 

the new methodology is the integration of automatically computed robustness metrics into 

method development experiments. The new methodology thus automates a best-practices 

approach in which HPLC methods can be rapidly developed and simultaneously optimized for 

mean chromatographic performance and method robustness. 
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Current HPLC Method Development Practice 
 
 
Reversed-phase HPLC is by far the most widely used HPLC separation methodology in 
pharmaceutical and biotechnology analytical applications. Reversed-phase HPLC is therefore the 
basis of the discussions and examples used in this paper. However, the reader will recognize that 
the instrumentation, software, and Quality-by-Design (QbD) based methodologies presented here 
are applicable to other HPLC approaches such as normal-phase and HILIC. 
 
Figure 1 presents a diagram of the HPLC method development workflow as it is commonly 
practiced today. As the diagram indicates, Phase 1 in the workflow addresses analytical column 
selection. In some cases identification of the appropriate solvent system is also done in this 
phase. In a previous white paper the authors described a new methodology for automated HPLC 
column and solvent system selection using Quality-by-Design (QbD) principles which 
overcomes the problems and limitations inherent in current screening approaches. 
 
Figure 1. Current Method Development Workflow 
 

 
 
The second method development phase addresses the remaining important parameters. The goal 
of this phase is identification of the parameter settings that meet all critical method performance 
criteria in terms of both compound separation and total assay time. However, current approaches 
to this work only characterize how candidate methods will perform on average (mean 
performance), with the result that robustness can only be qualitatively inferred when considered 
at all. Addressing method robustness is normally relegated to Phase 3 where it is limited to a 
demonstration experiment involving the final method. 
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The lack of accurate robustness characterization in method development is the reason that many 
methods must be redeveloped each time they are to be transferred downstream in the drug 
development pipeline in order to meet the stricter performance requirements that will be imposed 
on them. The statements reproduced below express how important this integration is in the view 
of the FDA and the ICH. 
 

FDA Reviewer Guidance [2]. COMMENTS AND CONCLUSIONS 
 

HPL Chromatographic Methods for Drug Substance and Drug Product. 
 

Methods should not be validated as a one-time situation, but methods should be validated and designed by the 
developer or user to ensure ruggedness or robustness throughout the life of the method. 

 
ICH Q2B [3]. X. ROBUSTNESS (8) 

 
The evaluation of robustness should be considered during the development phase and depends on the type of 
procedure under study. It should show the reliability of an analysis with respect to deliberate variations in 
method parameters... 

 
Although the goal is clearly stated, the guidances do not define how to accomplish such a task. 
The new methodology presented in this white paper has been developed in response to both the 
stated need for integrating robustness into the method development work and the lack of a 
defined “how to” approach. To meet the needs of a working analytical lab the new methodology 
was required to meet three important requirements: 
 

1. Be based on statistically rigorous QbD principles. 

2. Integrate quantitative robustness metrics without requiring additional experiments. 

3. Minimize the time and work burden by making maximal use of automation. 

 
In meeting these three requirements, the new methodology represents the automation of a best-
practices approach in which HPLC methods can be rapidly developed and simultaneously 
optimized for mean chromatographic performance and method robustness. 
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A New Quality-by-Design Based Methodology 
 
 
Figure 2 is a flowchart of a new QbD-based method development workflow. This workflow 
harmonizes with current practice in many labs in that it is becoming common for method 
development to be carried out in phases. However, the new methodology couples statistical 
Design of Experiments (DOE) methods, consistent with a QbD-based methodology, with 
quantitative robustness metrics to transform the qualitative elements of current practice into a 
statistically rigorous quantitative methodology. Most importantly, the rigorous quantitation of 
candidate method robustness is accomplished in minimum time and effort without the need for 
any additional live experimental work. 
 
Figure 2. New Method Development Practice Workflow 
 

 
 
Although the flowchart presented in Figure 2 identifies the important changes to current practice 
that have been developed and implemented in both phases of the method development workflow, 
the details of the Phase 1 changes are beyond the scope of this white paper and have been 
presented in a previous white paper. The following sections of this white paper detail the novel 
computational techniques and execution strategy developed for Phase 2 of the method 
development workflow along with a proof-of-technology experiment carried out at a major 
international pharmaceutical company. 
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Technical Background 
 
 
A successful Phase 1 effort that includes analytical column, pH, and organic solvent type means 
that these parameters can be set to a constant (fixed) in the second phase of method development. 
This significantly reduces compound co-elution and changes in compound elution order across 
experiment trials. As a result, compound peaks are more accurately tracked across the 
experiment trial chromatograms, minimizing inherent data loss. Peak tracking enables response 
prediction models (prediction equations) to be derived from the experiment data that accurately 
represent the effects of the study parameters on the chromatographic properties of the individual 
compounds being analyzed. 
 
Again, consistent with QbD principles a statistical design of experiments (DOE) approach is 
used to define the required trials in the method optimization phase. The experimental work 
involves the four steps described previously with the following modifications: 
 

1. Define the design space. This experiment is run using the column, pH, and organic 
solvent type identified as performing best in the Phase 1 experiment. 

 
The new practice uses a Phase 2 – Method Optimization experiment template that 
includes the factors identified below. As before, the template can be modified to, include 
other factors such as Column Oven Temperature and Additive based on the specific 
compounds that must be resolved. 

 
Experiment Variable Range or Level Settings 
Phase 1 Constants Column, pH, Organic Solvent Type 
Pump Flow Rate (mL/min) 0.7 — 1.5 
Gradient Slope (% Organic) 
  — Vary Final Conditions 

Initial %: 5.0 
Final % Range: 60.0 — 95.0 

 
Note - it is critical to set wide ranges for the study factors. A robustness validation 
experiment normally sets the ranges to the ±3.0σ limits, as its purpose is to demonstrate 
the “null” hypothesis – i.e., that the factors have no statistically significant effects across 
their noise ranges. However, the inherently low signal-to-noise ratio in such an 
experiment makes it completely inappropriate when the goal is to obtain models that 
accurately represent all significant variable effects. Therefore, in a properly defined DOE 
study the variable ranges should be approximately 10 times the noise range defined by 
the ±3.0σ limits, and never less than 5 times the noise range. 

 
2. Generate a statistically designed experiment. 

 
3. Run the various design conditions on the instrument. 

 
Once the experiment is run, the critical compound peaks in each experiment 
chromatogram are identified using native CDS features (peak tracking). The Fusion AE 
software then automatically retrieves all experimental results for each experiment 
chromatogram from the CDS. 

 
Note - in method optimization chromatographic performance metrics such as resolution 
are used to assure that the method provides accurate Quantitation in normal use. 
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4. Derive predictive models of the study parameter effects on the critical 
chromatographic characteristics under study. 

 
The software automatically derives response prediction models that accurately represent 
all statistically significant factor effects on resolution for all identified peaks. If required 
other critical chromatographic performance characteristics such as peak asymmetry 
(tailing) can be addressed in similar fashion. 

 
 
Obtaining the Robustness Models 
 
Once the software derives the response prediction models (Step 4 above), a second novel 
approach automated within the Fusion AE software program fully integrates quantitative method 
robustness metrics and modeling into the method optimization workflow (S-Matrix patents 
pending). To integrate robustness into method development according to QbD principles requires 
that robustness be put on a quantitative footing. To do this the following two conditions must be 

et: m
 

1. The robustness of any given candidate HPLC method must be able to be quantified. 

2. Robustness differences between candidate HPLC methods must be quantitatively related 
to instrument parameter effects. 

 
The reason that integrating quantitative robustness metrics into HPLC method development is so 
important is that different methods can provide the same mean performance but very different 
robustness. This is illustrated in Figure 4 for two methods designated A and B. Both methods 
have the same mean performance, but Method A performance varies excessively in response to 
inherent variation in critical HPLC instrument parameters while Method B performance does 
not. Since all current method development approaches only quantify a method’s mean 
performance, Method B could easily be identified as an appropriate method. The robustness of 
the method can not be seen by inspecting the chromatogram obtained by running the method on 
the HPLC. Therefore, the poor robustness performance of the method may not be identified until 
a robustness experiment is conducted as part of validating the method prior to transfer. This is 
clearly too late in the process. 
 
Figure 4. Mean Performance versus Robustness 
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Quantifying Method Robustness 
 
The robustness of an analytical method is its capacity to remain unaffected by small variations in 
method parameters. The phrase “capacity to remain unaffected” is understood to mean its 
inherent ability to provide quantitative data with the required accuracy and precision in normal 
use. As mentioned, chromatographic performance metrics such as resolution are used in method 
development to assure that the method provides accurate quantitation in normal use. The phrase 
“small variations” is understood to mean the expected random variations in the parameters about 
their setpoints that occur in normal use of the method over time. This is commonly referred to as 
setpoint error. 
 
The robustness definition expresses the understanding that variation in method parameters will 
affect method chromatographic performance characteristics that in turn affect Quantitation. This 
is illustrated in Figure 5, which shows the effect of a ±3.0% Organic setpoint error on the 
resolution results for a critical peak pair obtained from 60 independent executions of a gradient 
method. In this case the setpoint error translates into a response variation of ±0.5 in the 
measured resolution of the peak pair. Note that the method setpoint of 80% Organic gives a 
resolution of 1.50 for the peak pair, while an individual assay may provide a resolution anywhere 
from 1.00 (not baseline resolved) to 2.00. In this case the mean performance of the method is 
acceptable, but the response variation due to setpoint error is unacceptable. This is evidenced by 
the fact that at a mean resolution of 1.50, the -3.0σ variation limit is located at 1.00. In other 
words the method is not sufficiently robust with respect to the expected variation in % Organic. 
Note that, given the effect of the % Organic setpoint error on resolution, achieving acceptable 
robustness in terms of this parameter requires a mean resolution of ≥ 2.0 for the critical-pair. 
 
Figure 5. Impact of % Organic Setpoint Error on Resolution 
 

 
 
The new HPLC method development approach implemented in the Fusion AE software program 
uses the Process Capability index (Cp) to quantify method robustness. Cp is a Statistical Process 
Control (SPC) metric widely used to quantify and evaluate process output variation in critical 
product quality and performance characteristics. Cp is the ratio of the process tolerance to its 
inherent variation, and is computed as 
 

variation6
LTLUTLCp σ

−
=  
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UTL and LTL are the upper and lower response tolerance limits, and 6σ variation is the amount 
of observed response variation about the mean response value bounded by the ±3σ confidence 
interval limits. Cp is therefore a direct measure of inherent process variation relative to specified 
tolerances. Figure 6 illustrates the Cp calculation elements for the critical pair resolution response 
described above given a mean resolution ( X ) of 2.0 and tolerance limits of ±0.5. In classical 
SPC a process is deemed capable when its measured Cp is ≥1.33. The value of 1.33 means that 
the inherent process variation, as defined by the 6σ variation limits, is equal to 75% of the 
tolerance limits (4/3 = 1.33). Conversely, a process is deemed not capable when its measured Cp 
is ≤1.00, as the value of 1.00 means that the 6σ variation limits are located at the tolerance limits. 
 
Figure 6. Robustness Cp – Critical Pair Resolution Response 
 

 
 
The Cp metric is applied directly to critical chromatographic performance characteristics (critical 
responses) to determine the relative robustness of a candidate method in terms of the 
characteristic. The remainder of this discussion describes how this is done using resolution as the 
critical response. To compute Cp requires resolution response tolerance limits and 6σ variation 
limits for each study factor - the two elements of the Cp calculation. 
 
Tolerance Limits for Cp
 
Considering the tolerance limits first – they are readily defined using the following rules: 
 

1. They must be in the units of the response. 
 

2. They should be symmetrical. 
 

3. They should be defined as a ± tolerance limit delta (T∆) that delineates a relative 
tolerance range and not as absolute UTL and LTL values. 

 
T∆ must be able to be applied to different candidate methods to determine their relative 
robustness. Absolute UTL and LTL values can not be used, since the mean response will 
vary across the candidate methods being evaluated. 

 
4. The magnitude of the tolerance limit delta should represent a reasonable robustness goal 

for the critical response being evaluated. 
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6σ Variation Interval for Cp
 
The Fusion AE software has built-in default values of the normally expected ±3.0σ limits (6σ 
variation limits) for several critical HPLC instrument parameters. The values in the table are 
guidelines that may be adjusted based on individual HPLC module specifications and equipment 
condition. 
 
Translating an instrument parameter’s 6σ variation limits into variation in a critical response 
requires an equation (model) that quantitatively defines the parameter’s effect on the response. 
This response prediction model must accurately represent all significant parameter effects, 
including interaction effects, curvilinear effects, and non-linear effects. The new approach uses 
the response prediction models obtained from the DOE experiment together with Monte Carlo 
type simulation routines to predict how a candidate method will perform in terms of both the 
mean result and the response variation. 
 
Figure 7 illustrates how a resolution response prediction model is used to obtain predictions of 
both mean response and response variation for a given candidate method. First, 100,000 level 
settings are defined for each study factor using the normal distribution with mean value equal to 
the candidate method level setting and the ±3.0σ limits already defined for the factor. Next, the 
100,000 combinations of factor error distribution level settings are input into the resolution 
prediction model, one combination at a time, which provides 100,000 response predictions. The 
distribution of these predictions correctly reflects the cumulative propagated error resulting from 
the study factor variations. Statistically characterizing this distribution then provides the 6σ 
variation value required in the Cp calculation. A resolution Cp value is then calculated for the 
candidate method. Repeating this process for each candidate method in a DOE experiment thus 
provides a Cp value for each candidate method coordinated with the mean response result. Note 
that this simulation approach requires no additional experiment data. 
 
Figure 7. Response Variation Prediction 
 

 
 
It is important to note that this approach correctly represents study factor variation as random, 
normally distributed setpoint error, and represents the entire error distribution of each factor in 
the robustness computation. Current practice robustness experiments normally only contain 
combinations of the ±3.0σ limit values around each factor’s setpoint, and therefore do not 
provide data that correctly represents the robustness of the method being studied. 
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Once the Cp values are obtained for all candidate methods in the DOE experiment, the software 
automatically derives Robustness Cp models that quantify the effects of the study factors on 
method robustness for the resolution response. Resolution mean response and Robustness Cp 
models are then linked via numerical and graphical optimization routines to identify the study 
factor level settings that simultaneously meet goals for both mean resolution and resolution 
robustness. 
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Proof-of-Technology Experiment 
 
 
Following the successful column/solvent screening experiment (described in detail in a previous 
white paper) a Phase 2 –Method Optimization experiment was carried out at Pfizer’s Ann Arbor 
laboratories using the same experiment sample. The experiment used the column, pH, and 
organic solvent type identified in the Phase 1 experiment. The experiment modified the template 
in terms of pump flow rate and gradient slope as shown below. 
 

Experiment Variable Range or Level Settings 
Phase 1 Result Constants Column 3, pH = 2.5, Acetonitrile 
Pump Flow Rate (mL/min) 0.4 — 0.8 
Gradient Slope (% Organic) 
  — Vary Final Conditions 

Initial %: 5.0 
Final % Range: 70.0 — 95.0 

 
 
The Experiment Platform - Hardware 
 
Figure 3 illustrates the HPLC instrument system on which the screening and optimization 
experiments were run. The instrument system consisted of an Agilent Technologies 1100 HPLC 
configured with a G1311 quaternary pump, a G1313 autosampler, and a G1315 diode array 
detector. The HPLC instrument was augmented with a Varian, Inc. Column Valve Module 
(CVM) that contained a six-position solvent selector valve, a six-column switching valve, and 
column heating units. The solvent selector valve was connected to the Reservoir A line on the 
HPLC. This allowed automated multi-solvent screening of solvent linked study factors such as 
pH and additive. The column switching valve was connected to the main HPLC flow line. This 
allowed automated screening of up to six columns, or five columns and a bypass line. 
 
Figure 3. HPLC Instrument with CVM 
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The Experiment Platform - Software 
 
The experiments were generated and analyzed using the Fusion AE™ software program 
developed by S-Matrix Corporation. Fusion AE implements the phased QbD approach described 
in this paper using automated statistical experimental design, data analysis, and data modeling 
protocols. The software automatically converts the experiment designs into the native file and 
data formats required by the chromatography data system (CDS) software that directly controls 
the instrumentation. Additionally, the novel approaches to column/solvent screening and the 
integration of robustness into the method development process are fully automated in this 
software. The Varian® Galaxie™ CDS software program was used in these experiments. Galaxie 
provides full level-4 control of all Agilent Technologies HPLC instrument modules and also full 
control of all CVM components (column ovens and switching valves). 
 
Table 1 presents the experiment design generated from the modified template along with the 
Resolution response results imported directly from the CDS for the experiment chromatograms. 
Resolution results were imported for four critical peak pairs (1-2, 2-3, 5-6, and 9-10), as the 
compounds corresponding to the other sample peaks were well resolved in all experiment 
chromatograms. 
 
Table 1. Method Optimization Experiment Data Set 
 

 
 
Prediction models of the resolution responses were derived from the imported data for the four 
peak pairs using linear regression analysis. These mean prediction models were then used to 
generate Robustness Cp data for each peak pair for each experiment run as described in the 
Technical Background topic within this phase two section. Models were then automatically 
derived from the Robustness Cp data as also previously described. 
 



 

QbD Approach to Rapid Development of Robust HPLC Methods S-Matrix White Paper 
Copyright © 2007 S-Matrix Corporation. All rights reserved. Page 13 

Optimizing for Mean Performance and Robustness 
 
Since mean performance and robustness goals are specific to the particular method and its stage 
of development, the software’s numerical and graphical optimizers are “educated” by entering 
method performance goals for each chromatographic property studied, including robustness, into 
an optimization search setup dialog. Figure 8 is an image of the setup dialog implemented in the 
Fusion AE software program. The dialog enables three types of goals to be defined for numerical 
nd graphical solution searches: a

 
• Maximize – Lower Bound defines lower acceptability limit (e.g. Resolution, LB = 2.5, 

Robustness Cp, LB = 1.0). 
• Minimize – Upper Bound defines the upper acceptability limit (e.g. Retention Time of 

last retained peak sets total assay time goal). 
• Target – Lower and Upper Bounds define lower and upper acceptability limits 

around target (e.g. USP Tailing, LB = 0.8, UB = 1.2). 
 
Figure 8. Optimization Search Setup Dialog 
 

 
 
A numerical optimizer will thoroughly search the design space using the prediction models to 
identify the study factor level settings that will simultaneously meet or exceed all response goals. 
The numerical search routine investigates the design space at a level of granularity much finer 
than that represented by the experiment design runs. Numerical optimization is not described in 
detail here, since most scientists have at least some familiarity with numerical optimization 
routines and techniques through the use of the Solver routine provided within the Microsoft® 
Excel™ software program. However, a graphical optimization approach implemented in the 
Fusion AE software program is described in detail, as there is much less familiarity with this 
approach to optimization. 
 
In current practice graphical optimization is restricted to generating a 3D resolution response 
surface graph and visually examining it to identify the factor level setting combination that meets 
the resolution goal. Figure 9 presents such a graph showing the change in resolution (Z axis) for 
one peak pair (1-2) as a function of changing the two experiment factors pump flow rate (X axis) 
and initial hold time (Y axis). A graph such as this is sometimes referred to as a resolution map. 
Response surfaces can be generated for any modeled response for any paired combination of 
study factors included in the experiment design. When the experiment design includes more than 
two factors the 3D response surface graph will correspond to a single level setting of each 
remaining (non-graphed) factor. 
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Figure 9. Response Surface Graph: Resolution – One Peak Pair 
 

 
 
However, it is very often the case in HPLC method development projects that multiple peaks 
must be resolved. This makes the current practice approach of visually inspecting multiple 
resolution maps very cumbersome. Figure 10 is a trellis of four resolution response surface 
graphs illustrating the changes in resolution of four critical peak pairs (1-2, 2-3, 5-6, and 9-10) as 
a function of changing the pump flow rate (X axis) and the final percent organic (Y axis). 
Attempting to identify the level setting combination of the graphed variables that will result in 
adequate resolution of all peak pairs by visually comparing the four graphs in Figure 11 is both 
tedious and difficult. The number of graphs that must be compared, and therefore the difficulty 
of the task, grows geometrically when one must also consider additional responses such as peak 
asymmetry and/or when more than two parameters are included in the experiment. 
 
Figure 10. Response Surface Trellis: Resolution – Five Peaks 
 

 
 
The graphical approach to optimization approach implemented in the Fusion AE software 
program builds on the fact that it is easier to identify the “best” level setting combination of the 
study factors using a 2D contour graph. Figure 11 presents a 2D contour graph corresponding to 
the 3D response surface graph in Figure 9. The relationship between the two graphs can be 
understood by thinking of the 2D contour graph as the 3D response surface graph as it would 
appear if viewed from directly above the surface. 
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Figure 11. Response Contour Graph: Resolution – One Peak Pair 
 

 
 
Figure 12 is a simplified version of the contour graph in Figure 11. In this graph a goal of 
Maximize is applied to the 1-2 Resolution response with a minimum acceptability value (Lower 
Bound). The graph is interpreted as follows: 
 

• The Dark Red shaded region corresponds to parameter settings that do not meet the 
Resolution minimum acceptability goal (predicted responses are below the lower bound 
value). 

• The Black line bordering the shaded and unshaded regions corresponds to parameter 
settings that exactly meet the Resolution goal (predicted responses equal the lower bound 
value). 

• The unshaded region corresponds to parameter settings that exceed the Resolution goal 
(predicted responses are above the lower bound value). 

 
Figure 12. Response Overlay Graph: Resolution – One Peak Pair 
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Figure 12 is called a Response Overlay graph, since multiple response goals can be displayed 
(overlaid) on the one graph. This is shown in Figure 13, which contains Resolution goals 
(Maximize, all Lower Bounds = 2.5) for all four critical peak pairs in the DOE-based method 
development experiment sample. Note that five individual graphs would have to be generated 
and visually inspected to determine the same information contained in this one response overlay 
graph in terms of level setting combinations that meet/do not meet all resolution goals. 
 
Figure 13. Response Overlay Graph: Resolution – Five Peaks 
 

 
 
Figure 14 is the response overlay graph shown in Figure 13 with additional overlays of 
Robustness Cp goals (Maximize, all Lower Bounds = 1.25) defined for all peak pairs having 
predicted mean resolution values below 4.00. As indicated in the figure, modeling the computed 
Robustness Cp values defined for the DOE experiment methods enables these responses to be 
directly integrated into the optimization search along with all other critical responses. The 
unshaded region in this final overlay graph now represents the level setting combinations of the 
study factors that exceed the defined goals for both mean performance and robustness. 
 
Figure 14. Response Overlay Graph: Resolution and Cp – Five Peaks 
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Finally, Figure 15 is the chromatogram obtained by injecting the sample on the HPLC set at the 
optimum parameter settings identified in the two experiments. These final method conditions are 
defined below. It is noteworthy that the total experimental work required to obtain this final 
method consisted of two multi-factor statistically designed experiments, both of which were 
carried out overnight in fully automated (walk-away) mode. 
 

Phase 1 – Column/Solvent Screening 
 

Column Type – Column 3 
pH – 2.5 
Gradient Time – 40 minutes 

 
Phase 2 – Method Optimization 

 
Pump Flow Rate – 0.67 mL/min 
Final % Organic – 70 % 

 
Figure 15. Chromatogram from Optimized Method 
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Conclusions 
 
 
The Phase 1 – Column/Solvent Screening experiment identifies the correct analytical column, 
pH, and organic solvent type to use in the next phase of method development. Once these 
instrument parameters are identified, the second phase of method development involves 
experimentally manipulating the remaining important instrument parameters to obtain a method 
that meets all performance requirements. However, all current approaches to meeting this goal 
only address method mean performance. As a result, robustness is currently only evaluated 
separately as part of the method validation effort. The novel Quality-by-Design based 
methodology described here combines Design of Experiments methods with Monte Carlo 
simulation to successfully integrate quantitative robustness metrics into the method development 
process. This combination enables a best practices approach to method development and 
optimization as the regulatory guidances recommend without requiring any additional 
experimental work. 
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Acronyms, Tables and Figures 
 
 
Acronyms: 
 

21 CFR 11 – Title 21, Part 11, of the Congressional Federal Register 
CDS – chromatography data system 
DOE – design of experiments (also DOX) 
FDA – U.S. Food and Drug Administration 
GC – gas chromatography 
HPLC – high performance liquid chromatography 
ICH – International Conference on Harmonisation of Technical Requirements for Registration of 

Pharmaceuticals for Human Use 
PhRMA – Pharmaceutical Research and Manufacturers of America 
QbD – quality by design 
SDK – Software Development Kit (third-party software development interface) 
SOP – Standard Operating Procedure 
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Figure 8. Optimization Search Setup Dialog 
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